

Europeana Space – Spaces of possibility for the creative reuse of Europeana’s content

CIP Best practice network - project number 621037

 Page 1 of 79

Deliverable number D2.4

Title Access APIs

Due date Month 20

Actual date of

delivery to EC

19 April 2016

Included (indicate

as appropriate)

Executive Summary Abstract Table of Contents

Project Coordinator:

Coventry University

Professor Sarah Whatley

Priority Street, Coventry CV1 5FB, UK

+44 (0) 797 4984304

E-mail: S.Whatley@coventry.ac.uk

Project WEB site address: http://www.europeana-space.eu

mailto:S.Whatley@coventry.ac.uk
http://www.europeana-space.eu/

Deliverable D2.4

Access APIs

 Page 2 of 79

Context:

Partner responsible for

deliverable

NTUA

Deliverable author(s) Nasos Drosopoulos (NTUA) and Frederik Temmermans

(iMinds)

Deliverable version number 1.4

Dissemination Level

Public

History:

Change log

Version Date Author Reason for change

0.1 23-09-2015 Nasos Drosopoulos Outline & ToC

0.2 25-09-2015 Nasos Drosopoulos, Frederik

Temmermans

First draft

0.2 02-10-2015 Michael Giazitzoglou Full list of API calls and

documentation

0.5 21-11-2015 Nasos Drosopoulos, Eirini

Kaldeli, Giorgos Marinellis,

Maria Ralli

Update API calls responses

using feedback from hands-

on session with WP4 pilot

teams

1.0 21-12-2015 Nasos Drosopoulos Update to correspond to the

new data model for the

Technical Space

1.1 26-02-2016 Michael Giazitzoglou Updated list of API (v.2)

calls

1.2 30-03-2016 Giorgos Marinellis Updated application data

model

1.3 04-04-2016 Nasos Drosopoulos, Frederik

Temmermans

Final draft

1.4 19-04-2016 Nasos Drosopoulos and Tim

Hammerton

Conclusion added and final

amendments

Release approval

Version Date Name & organisation Role

1.4 19-04-2016 Tim Hammerton, COVUNI Project Manager

Deliverable D2.4

Access APIs

 Page 3 of 79

 Statement of originality:

This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,
quotation or both.

Deliverable D2.4

Access APIs

 Page 4 of 79

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY... 5

2 INTRODUCTION ... 6

2.1 EUROPEANA SPACE INFRASTRUCTURE CONCEPT AND COMPONENTS .. 6

2.2 STRUCTURE OF THE DOCUMENT ... 7

3 CULTURAL REPOSITORIES API COMBINATION ... 8

4 TECHNICAL SPACE ACCESS APIS ... 9

4.1 REQUIREMENTS, IMPLEMENTATION DETAILS AND API OVERVIEW ... 9

4.2 APPLICATION DATA MODEL... 11

4.2.1 Resource modelling ... 11

4.2.2 Main classes and properties .. 12

4.2.3 Implementation ... 18

4.3 API CALLS.. 20

4.3.1 Search .. 20

4.3.2 Record ... 25

4.3.3 Collection and Exhibition ... 34

4.3.4 User ... 48

4.3.5 User Groups ... 56

4.3.6 Organization and Project .. 62

4.3.7 Media .. 65

4.4 INTERACTIVE DOCUMENTATION USING SWAGGER ... 67

4.4.1 API Keys ... 67

4.4.2 Swagger UI .. 67

5 INTEROPERABILITY WITH THE JPSEARCH FRAMEWORK ... 73

5.1 INTRODUCTION ... 73

5.2 ACHIEVING INTEROPERABILITY WITH THE JPSEARCH FRAMEWORK ... 75

5.2.1 Embedding metadata in JPEG images ... 75

5.2.2 Metadata mapping and registration... 75

5.2.3 Linked data .. 76

5.3 JPSEARCH API .. 76

5.3.1 Basic concepts ... 76

5.3.2 Image resources .. 77

5.3.3 Image metadata .. 78

5.3.4 Collections ... 78

6 CONCLUSIONS ... 79

Deliverable D2.4

Access APIs

 Page 5 of 79

1 EXECUTIVE SUMMARY

The Europeana Space project aims to increase and enhance the creative industries’ use of

Europeana and other online collections of digital cultural content, by delivering a range of

resources to support their engagement. The project addresses all sectors of the creative

industries, from content providers to producers, exhibitors, artists and makers of

cultural/creative content, publishers, broadcasters, telecoms and distributors of digital

content.

The Technical Space has been made available for cultural institutions and organizations,

professional users and third party developers in order to easily search for the cultural

resources that meet their retrieval criteria so as to collect, use and re-use them to promote

innovation and demonstrate the social and economic value of cultural content (see D2.3 –

Europeana Space Infrastructure). This is achieved through the delivery of APIs that facilitate

the development of applications based on cultural content and is validated through the

realisation of the six Pilot projects. The latter serve as the basis for continued experimentation

and innovation in a series of dedicated hackathons and workshops that are expected to

produce new applications and services based on Europeana’s resources. The interaction with

this Innovation Space produces additional requirements that are evaluated and addressed by

the Technical Space, reflecting a ‘real-world’ approach to development that can be made

immediately useful.

This report documents the platform's developed APIs and serves as a user manual for

professional users and third party developers who intend to use them in order to consume

cultural resources for the development of applications. It presents and discusses the platform's

application data model and provides an overview and detailed documentation of all available

API calls. Finally, it documents guidelines and actions taken to achieve interoperability of

cultural heritage image repositories with the JPSearch framework, while describing an open

source implementation of the JPSearch API that is provided as a reference.

Deliverable D2.4

Access APIs

 Page 6 of 79

2 INTRODUCTION

2.1 EUROPEANA SPACE INFRASTRUCTURE CONCEPT AND COMPONENTS

Europeana Space introduced the Technical Space (documented in D2.3 – Europeana Space

infrastructure) in its effort to support and promote the re-use of digital cultural heritage

resources. The Technical Space is a platform for storing, accessing and processing content and

metadata. It is designed and developed in alignment with complementary services used and

produced in the Europeana ecosystem, and informed by the design of respective

infrastructures being developed, such as Europeana Labs1, the Europeana Cloud2 and LoCloud3,

and of more specialized applications targeting cultural heritage content visualization and re-

use, such as the tools and pilots of AthenaPlus4 and EUscreen5. The platform targets cultural

institutions and organizations, professional users and third party developers, offering the

ability to easily search for the cultural resources that meet their retrieval criteria so as to

collect, use and re-use them to promote innovation and demonstrate the social and economic

value of cultural content.

At a high level, its functionalities can be summarized in the following list:

 Aggregate multiple sources of cultural heritage content.

 Create and curate collections of digital resources.

 Upload and add metadata and content to the search base.

 Maintain interoperability with data models and standards using the services of the

metadata processing unit (MPU, see D2.2 for specifications and documentation).

 Store metadata in several formats and serialisations; support for widely used domain

models.

 Serve collections as specific backends for specialized front-end applications.

The latter is achieved through the delivery of APIs that facilitate the development of

applications based on cultural content and is validated through the realisation of the project's

six Pilot projects. Those serve as the basis for continued experimentation and innovation in a

series of dedicated hackathons and workshops that are expected to produce new applications

and services based on Europeana’s resources. The platform can be accessed through its

landing page at http://with.image.ntua.gr/ or via the customized group pages (see D2.3 for

more details) such as the project's space6 or specific event pages e.g. the Publishing pilot

hackathon7.

1 http://labs.europeana.eu/

2 http://pro.europeana.eu/project/europeana-cloud

3 http://locloud.eu

4 http://www.athenaplus.eu/

5 http://blog.euscreen.eu/euscreenxl

6 http://with.image.ntua.gr/custom/espace/

7 http://with.image.ntua.gr/custom/hackthebook/

http://with.image.ntua.gr/
http://labs.europeana.eu/
http://pro.europeana.eu/project/europeana-cloud
http://locloud.eu/
http://www.athenaplus.eu/
http://blog.euscreen.eu/euscreenxl
http://with.image.ntua.gr/custom/espace/
http://with.image.ntua.gr/custom/hackthebook/

Deliverable D2.4

Access APIs

 Page 7 of 79

Figure 1. Europeana Space Infrastructure software components

The platform consists of the following components, illustrated in the diagram of Figure 1, and

is documented in detail in deliverable D2.3 - The Europeana Space Infrastructure:

 The storage layer for metadata and content.

 The workflow engine for managing and publishing collections of digital resources.

 The Content Reuse Framework and the Metadata Processing Unit.

 The Processing Infrastructure and the services deployment and integration layer.

 The User Interface to access functionalities and visualize data.

 The Access APIs for the platform's data and services.

2.2 STRUCTURE OF THE DOCUMENT

Chapter 3 focuses on an important feature of the platform that empowers its API functionality,

the ability to search and collect resources from external APIs and the subsequent availability of

those resources through its API in an aggregated way. Chapter 4 presents the Technical Space

Access APIs, starting from an overview of requirements, implementation details and categories

of API calls. Section 4.2 presents and discusses the Technical Space application data model that

governs the schemas and serializations for the responses of the API, while Section 4.3

documents in detail all available calls. Section 4.4 provides information regarding API Keys and

illustrates the API's interactive documentation service. Chapter 5 presents guidelines and

actions taken to achieve interoperability with the JPSearch framework8 for image search and

retrieval. Finally, Chapter 6 summarizes the report and the WP's ongoing and expected

activities related to the development and deployment of the Technical Space Access APIs.

8 https://jpeg.org/jpsearch/index.html

https://jpeg.org/jpsearch/index.html

Deliverable D2.4

Access APIs

 Page 8 of 79

3 CULTURAL REPOSITORIES API COMBINATION

An important aspect of the platform's functionality and its approach towards content sourcing

is the combination of third-party APIs in order to access several cultural heritage repositories

through a unified interface (and subsequently data model), and to aggregate their responses.

The need to consume information from many data sources is ever present today in web

development and in the cultural domain specifically, with the proliferation of data sources

hosting important resources in the form of metadata records, thesauri, authority files, linked

data etc. The Technical Space implements a federated search that can configure, integrate and

access available sources through their exposed APIs. The different results of the common

search are processed and aggregated by the system before being presented to the user. This

processing corresponds mainly to two categories, translation and analysis. The former includes

mapping, formatting and normalization of the API responses so that they can be listed in an

aggregation format, compared and re-used in a common way. The latter corresponds to

comparing the different responses and information and allowing for common handling of

important data such as the rights statements and reuse information. This then leads to an

availability of collections of diverse resources through a single API that allows common access

and visualization, and facilitates application development.

The federated search of the Technical Space currently integrates the following cultural

heritage data sources:

 Europeana

 Digital Public Library of America

 National Library of Australia

 Digital New Zealand

 Rijksmuseum

 British Library collections on Flickr Commons

 Europeana Fashion

 YouTube

Most of them expose metadata records and content files for cultural heritage items with a

different range in terms of geographical coverage (from continental aggregators to individual

institution repositories) and types of content (Image, Text, Audio, Video etc.), while others

offer more specialized resources such as people, places and thesaurus concepts, or focus on

exposing higher quality content or media in general. The collections created through the

federated search allow the user to combine the potentials of the different APIs to provide a

single powerful new service that gives easy, homogenized access to heterogeneous

information. For more details on implementation and the configuration of sources see Section

3.3.2 in D2.3.

Deliverable D2.4

Access APIs

 Page 9 of 79

4 TECHNICAL SPACE ACCESS APIS

4.1 REQUIREMENTS, IMPLEMENTATION DETAILS AND API OVERVIEW

The necessity for an elaborate, fully functional API for the Europeana Space infrastructure was

addressed from the proposal phase of the project and subsequently highlighted in various

occasions until the conclusion of the requirements analysis that is reported in deliverable 2.1.

The latter also highlighted the importance of the APIs combination outlined in the previous

chapter, as a first step for sourcing diverse content that can then be accessed through a

common API.

The Technical Space is using NTUA's WITH, an elaborate platform for both users and

developers, which was built with the Play Framework9, AKKA toolkit10, MongoDB database11,

and the Elasticsearch engine12, using JAVA and Javascript. WITH was designed to use a REST

(Representational State Transfer) API to access the back-end and communicate with the front-

end, providing a way for developers of other applications to use the data and services that it

exposes. This decision was supported by the requirements analysis and has added to the

versatility of the platform as first usage cases, from the project's pilots and hackathon

participants, have even shown the potential need of using more calls than the ones that

provide access to cultural heritage resources, such as calls regarding users and groups, or to

services such as the federated search. Of course, some of the more platform specific calls

introduce the necessity for the API consumer to understand some of its business logic, but

careful design prevents inconsistency and maintenance overheads, while the main set of calls

that pertain to cultural heritage resources remain RESTful.

REST introduces a set of constraints to the design of software components that use URIs and

typically communicate over HTTP. RESTful systems use a constrained vocabulary of verbs to

retrieve and send data by interfacing with web resources13. The API is defined from its base

URI, the media types used for data communication, the HTTP methods it uses, and the

hypertext links for manipulating resources (e.g. create a file or update a metadata record)

represented by URIs. The base URI of its API is http://with.image.ntua.gr/ and the media type

is JSON. It uses the common HTTP methods GET, PUT, POST and DELETE which operate on

resources, using links like {baseURI}/collection/{collectionId}/list. Along with these requests a

number of parameters can be passed to facilitate data exchange. All calls, schemas and

responses have been documented in detail and are provided in the respective developers

pages (accessible through the platform's UI), using the Swagger schema14 for two visualizations

(see Section 4.5).

9 https://www.playframework.com/

10 http://akka.io/

11 https://www.mongodb.org/

12 https://www.elastic.co/products/elasticsearch

13 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

14 http://swagger.io/specification/

http://with.image.ntua.gr/
https://www.playframework.com/
http://akka.io/
https://www.mongodb.org/
https://www.elastic.co/products/elasticsearch
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://swagger.io/specification/

Deliverable D2.4

Access APIs

 Page 10 of 79

Following is an overview list of the main categories of calls of the Technical Space API:

 Search

It includes calls for retrieving internal and external resources and additional ones that help the

discoverability of available sources and filtering options. There are two search calls, a general

search that only returns an array of records from external sources, and an advanced that also

returns a list of aggregated filters to facilitate faceted search on both internal and external

records.

 Records and Rights

This category refers to calls for actions on internal records, i.e. resources within the Technical

Space database according to its license and the user's rights (for more information on

authentication, user and IP rights see D2.3 and specifically sections 3.2.1, 3.3.1 and 4.1). It

includes calls to retrieve a record's metadata, update a record or delete it. The record is

specified by a parameter in the call path, the record's ID value. External search results are not

kept in any database, however any records added to collections are stored.

 Collections and Exhibitions

Calls to collections are the main way users can search the internal records of the WITH

database. Since user access to collections is controlled by their owners through access rights, it

is a consequence that any search performed adheres to them. Two calls are provided that list

all collections available to a logged in user. List collections shows all the collections the user

has at least read access to, and list shared collections shows all collections that have been

explicitly shared with the user, i.e. not public collections. These two calls can have many

different filter options passed as parameters in the request. Other calls concerning collections

offer basic functionalities such as create, edit or remove a collection, add or remove a record

to a collection, list all the records in a collection and list all the collections of a specified user.

Collections and exhibitions are treated in a similar fashion in the database, therefore calls to

collections can refer to exhibitions as well.

 Users and user groups

Calls to manage and authenticate users and groups. Users refer to individual user accounts

that have registered in WITH. User groups on the other hand can refer to either groups,

organizations or projects. The calls to organizations or projects are, in essence, the same as the

calls to groups, however different paths have been provided in the API for simplicity. On the

other hand, some calls that refer to common elements of users and groups, like the profile id

for example, are the same, so the same path is used.

 Media

Calls specific to managing media resources (e.g. image files) stored in the platform to enable

the project's content repository. They provide functionality for creation, access, editing of

metadata and deletion of media. Calls to WITH's Media Checker library15 will be included here

when available (see section 3.2.2 in D2.3).

15 https://github.com/finikm/mediachecker

https://github.com/finikm/mediachecker

Deliverable D2.4

Access APIs

 Page 11 of 79

 Other

Other API calls exist mainly to provide specific functionalities for the platform's front-end.

Those are not listed in the 'public' calls in the API documentation, even though they are

available and are also being tested by specific API consumers. Such calls refer to auto-complete

functions, mapping static resources like files to the URL path etc. New calls are being added as

development continues, especially through the interaction with users and API consumers, and

subsets that are being beta-tested, such as the semantic relation calls used by the Europeana

TV pilot of the project, will eventually become available.

Finally, it is important to reiterate that most of these calls are used by the Technical Space's

front-end, therefore the inspector console (especially the network tab) of all major modern

browsers is a great source of examples of how these calls are being used.

4.2 APPLICATION DATA MODEL

This section presents and discusses the way WITH stores its data and implements the Technical

Space application data model. This structure acts as the internal and external API, by defining

the schemas for data exchange, granting developers access to the data store and exceptional

control over the system's services. This document does not describe the components that

access, create or consume this data to provide the functionality of the Technical Space; for

more on that, see deliverable 2.3 - Europeana Space Infrastructure.

One of the most evolving parts of the platform is the data model for representing collected

items from external repositories. The architectural choices for the platform specifically allowed

for an evolving data model, as the modelling activities in the cultural heritage domain are

numerous, with new schemas frequently introduced, existing standards updated, thesauri and

authority files evolving and, the level and expressivity of their semantics being a parameter

that is still evaluated and fine-tuned. The establishment of interoperability between the Data

Infrastructure and the external sources, through the implementation of formal mappings

between them, allows for updating the data model and extracting any additional information

or updating the crosswalk to correspond to the improved alignment. In that way the platform's

aggregation data model can be developed further without interrupting or disrupting the

platform's usage.

During the second year of the project a new data model for the platform was implemented,

which allows a big step to be taken towards a more powerful and expressive system. There are

several updates that focus on enabling better ways of combining sources and applying

common filters and criteria when searching for cultural heritage material in the evolving set of

external sources.

4.2.1 Resource modelling

As reported in D2.3, it was decided to redesign the original data model of the platform, based

on the decision to properly model the collection of web resources, instead of what is

traditionally termed as 'items'. Currently, Europeana, DPLA and such aggregation repositories,

collect and expose metadata records about cultural heritage objects or items. In those records

CH objects are connected to other resources, such as the media files that depict them and the

Agents (people or organizations), Places, Timespans or Concepts that appear in their

documentation.

Deliverable D2.4

Access APIs

 Page 12 of 79

There are also several, very important sources that only expose such resources not in

connection with an item but standalone, for example thesauri of concepts, datasets describing

famous artists, geographical databases and so on. The new data model allows for searching

and collecting all kinds of resources instead of only CH objects, giving the ability to create

collections that are not just sets of records, but a group of web resources that are semantically

linked. In that sense, a user that is interested, for example, in Italian Renaissance painting, can

collect famous paintings (items from CH aggregators) together with resources that represent

the painters themselves (e.g. DBpedia topics or VIAF authority files), the locations where they

were working or exhibiting (e.g. GeoNames entries), a relevant time period

(http://dbpedia.org/page/Category:Renaissance), a set of concepts that describe the period or

movement and so on.

This more expressive representation can provide an advantage to the applications that

consume the data. Moreover, the semantic store and engine of the Data Infrastructure can

expose more expressive structures and serializations, and perform reasoning tasks, serving as a

basis for development of applications that aim at being part of the semantic web and/or linked

data cloud. It also strengthens the impact of the Technical Space as a platform for re-

organizing, re-purposing and re-using cultural heritage by moving away from the notion of

item repositories towards a network of connected resources. In the same sense the data

model also implements a structure for recording events (combinations of objects, agents,

places and timespans, as defined by CIDOC-CRM and used by the LIDO schema) in order to

properly represent and visualize information about cultural heritage resources. Since

established standards for modelling cultural heritage resources exist, for example EDM and

LIDO, the application data model reuses these vocabularies, while the API responses can be

serialized using these formats.

4.2.2 Main classes and properties

The main data structure in WITH's data model is the WithResource. Everything collected, or

produced through MINT and pushed to WITH is a WithResource that can be discovered,

viewed, collected and re-used. At the moment the following classes extend the WithResource

class:

 Collection

 CulturalObject

 Place

 Event

 Agent

 Timespan

Every WithResource is described using the following metadata categories that are defined in

more detail in the next section:

 Administrative

 Usage

 Provenance

Deliverable D2.4

Access APIs

 Page 13 of 79

 Collection related

 Media

 Descriptive

Administrative (all the elements are mandatory)

Element Type Description/Comments

access WithAccess User ID and types/level of access

withCreator ObjectId The identifier of the creator of the resource in WITH

withURI URI Generated URI for the resource in WITH domain

created Date The date the resource created in WITH

lastModified Date The date the resource was last modified in WITH

underModeration Map<ObjectId,

Access>

Reserved for future implementation of crowdsourced

moderated editing or enrichment of resources

externalId String This identifier is used for resolving duplicates. It is a hash

of the source, provider and the external ID created from

the last entry in the provenance chain.

Usage (social networking dimensions)

Element Type Description/Comments

likes Integer The number of times the collected resource got a like.

collected Integer The number of times a resource is collected.

annotated Integer The number of times a resource is annotated.

viewCount Integer The number of times the resource was viewed

tags ArrayList<String> User or automatically assigned tags with no semantics

Provenance

Element Type Description/Comments

datasource String

one of: Europeana,

DPLA, DigitalNZ etc.

The datasource from which the resource was collected.

The range of the element is an enumeration of the

datasources supported.

Deliverable D2.4

Access APIs

 Page 14 of 79

source String

XML or JSON

The original record and serialization of the collected

resource.

datasourceRecordID String The identifier of the resource in the data source from

which it was collected by the WITH user e.g. the

Europeana identifier

provider String,

source dependent

The provider of the resource. This varies for each data

source. In the case of Europeana and DPLA this can be

the Aggregator.

dataprovider String The data provider of the resource. This is usually the

organization that created and hosts the collected

resource.

originalId Array<String> The original identifier of the resource. In most cases the

identifier is one, but there are quite a few cases that

more than one local identifiers are used (values of

dc:identifier).

originalURL String

URL,

Source dependent

The original URL of the resource. In the case of the

Europeana source this will be the isShownAt value.

Collection Related

Element Type Description/Comments

collectionID String Normally the range of this element should be a URI. The

value for WITH collections is a hash ID). In addition, a

collected resource may already belong to an external

collection that can be represented here.

position String The position of the collectedResource in the collection.

Media objects are created for each digital object linked to a resource

Element Type

dbId ObjectId

resources Array<ObjectId>

MimeType Media type

OriginalRights LiteralorResource

Width Int

Deliverable D2.4

Access APIs

 Page 15 of 79

Height Int

Size Long

mediaBytes byte

Codec String

durationSeconds Double

SpatialResolution Int

BitRate Int

FrameRate Int

ColorSpace String

ComponentColor Hex

AudioChannelNumber Int

SampleSize Int

SampleRate Int

ParentID ObjectId

Descriptive

Descriptive metadata vary depending on the source and type of the collected resource. The

properties in the next table constitute the minimum information required for a resource in

WITH. Semantics for elements are inherited by the vocabularies reused. Mandatory elements:

 resourceType

 one of title, description

 one of edm:IsShownBy, isShownAt

 MetadataRights

Element / Semantics Type Description/Comments

Label

dc:title or skos:prefLabel

Literal(s) The label of the resource. This is

the title in case of objects, and

name in case of Agents and Places.

Description

dc:description

Literal(s) A description of the resource.

Alternative

dct:alternative or

Literal(s) The alternative label of the

resource.

Deliverable D2.4

Access APIs

 Page 16 of 79

skos:altLabel

Keywords

dc:subject

Array<ResourceOrLiteral> The subject of the resource and

possible tags.

IsShownBy

see EDM

URL Digital object

IsShownAt

see EDM

URL HTML representation

MetadataRights

dc:rights

ResourceOrLiteral
Rights statements, licenses

sameAs Array<String/URIs> URL of a reference Web page that

unambiguously indicates the item's

identity. E.g. the URL of the item's

Wikipedia page, Freebase page, or

official website.

rdfType Array<String/URIs> An element for additional

RDF/OWL classifications.

MetadataQuality Quality metrics

PCHO stands for Provided Cultural Heritage Object and corresponds to the majority of the

resources collected through WITH. PCHO extends the collected resource with the elements of

the following table.

Element Type Description/Comments

dcidentifier Array<ResourceOrLiteral> The local identifier.

dclanguage Array<Literal> The language.

dctype Array<ResourceOrLiteral> The nature or genre of the resource. Type includes

terms describing general categories, functions,

genres, or aggregation levels for content.

dccoverage Array<ResourceOrLiteral> The spatial or temporal topic of the resource, the

spatial applicability of the resource, or the

jurisdiction under which the resource is relevant.

This may be a named place, a location, a spatial

coordinate, a period, date, date range or a named

administrative entity.

dctspatial Array<ResourceOrLiteral> Spatial characteristics of the resource.

dccreator Array<ResourceOrLiteral> An entity primarily responsible for making the

resource. This may be a person, organisation or a

service.

Deliverable D2.4

Access APIs

 Page 17 of 79

dccreated Array<WithTime>

dcdate Array<WithTime> A point or period of time associated with an event in

the lifecycle of the resource.

dcformat Array<ResourceOrLiteral> The file format, physical medium or dimensions of

the resource.

dctmedium Array<ResourceOrLiteral> The material or physical carrier of the resource.

isRelatedTo Array<Resource> The related resources of the given resource.

events Array<CidocEvent>
Events

Agent extends the collected resource with the elements of the following table.

Element Type Description/Comments

resourceType String The type of the collected resource. In this case the

value will be “Agent”.

birthdate Array<WithDate> The date of birth. It is an array because the exact date

of birth is not always known and in many cases

estimates are used.

birthplace Array<ResourceOrLiteral> The place of birth.

deathdate Array<WithDate> The date of death. It is an array because the place of

birth is not always known and estimates are used.

deathPlace Array<ResourceOrLiteral> Spatial characteristics of the resource.

gender Literal

Place extends the collected resource with the elements of the following table.

Element Type Description/Comments

resourceType String The type of the collected resource. In this case the

value will be “Place”.

nation Array<ResourceOrLiteral> The nation to which the place belongs

continent Array<ResourceOrLiteral> The continent to which the place belongs.

partOfPlace Array<ResourceOrLiteral> The list of places to which the place belongs.

wgs84poslat Double The latitude coordinate.

Deliverable D2.4

Access APIs

 Page 18 of 79

wgs84poslong Double The longitude coordinate.

wgs84posalt Double The altitude coordinate.

accuracy Double

TimeSpan extends the collected resource with the elements of the following table.

Element Type Description/Comments

resourceType String The type of the collected resource. In this case the value will be

“TimeSpan”.

periods Array<WithPeriod> The exact start date may not be known that’s why an array is

used.

Event extends the collected resource with the elements of the following table.

Element Type Description/Comments

resourceType String The type of the collected resource. In this case the

value will be “Event”.

period Array<WithPeriod> The exact start date may not be known that’s why

an array is used.

personsInvolved Array<ResourceorLiteral> The persons involved in the event. Agents or

Literals.

places Array<ResourceorLiteral>
Places involved in the event. Places or Literals.

objectsInvolved Array<ResourceorLiteral> The objects involved in the event.

4.2.3 Implementation

The diagrams of Figures 2 and 3 illustrate the current implementation of the data model in

WITH's storage layer. Naturally, it goes beyond the basic specification provided in the previous

sections, both due to the model and platform evolving in the same time and often independently

and, due to the fact that the platform usually needs to store more, application-specific

information. In Section 4.3 that documents the API calls, one can find the actual structures that

an API consumer receives.

Deliverable D2.4

Access APIs

 Page 19 of 79

Figure 2. Main data model classes, properties and enumerations implemented for the Technical Space

Figure 3. Media object classes, properties and enumerations

Deliverable D2.4

Access APIs

 Page 20 of 79

4.3 API CALLS

4.3.1 Search

General search in external resources and the WITH database

Method Call Description

POST /api/search Body contains search parameters, response is a JSON array

of records that match the search term. Boolean search

supports use of AND, OR and NOT operators. Terms

separated without an operator (using a space) are treated as

an AND. Use of quotes will perform exact term or phrase

searches. For example, "Olympian Zeus" will search for the

exact phrase, whereas Olympian Zeus will equate to

Olympian AND Zeus. For more search options use advanced

search.

Body Sample Response Sample

{

"searchTerm": "zeus",

 "page": 1,

 "pageSize": 20,

 "source": [

 "Europeana"

]

}

[

 {

 "query": "string",

 "totalCount": 0,

 "startIndex": 0,

 "count": 0,

 "items": [

 {}

],

 "source": "string",

 "facets": [

 {

 "name": "string",

 "fields": [

 {

 "label": "string",

 "count": 0

 }

]

 }

],

 "filters": [

 [

 {

 "filterName": "string",

 "filterID": "string",

 "suggestedValues": [

 {

Deliverable D2.4

Access APIs

 Page 21 of 79

 "value": "string",

 "count": 0

 }

]

 }

]

]

 }

]

Response Messages

400 Bad request (invalid json)

Advanced search with filters (faceted search)

Method Call Description

POST /api/advancedsearch An extension of the simple search to include filters for search

with facets. The values of the filters are NOT preset. To see

what filters you can use, you should use the

/api/initialfeatures call. Then you can send another query

with some values of all the possible filters. To get a better

understanding a suggestion is to use the inspector console of

your favourite browser and observe the network activity

while performing a search from the front-end, using

different filter values.

Body Sample Response Sample

{

 "searchTerm": "zeus",

 "page": 1,

 "pageSize": 10,

 "source": [

 "Europeana"

],

 "filters": [

 {

 "filterID": "media.type",

 "values": [

 "image"

]

 }

]

}

[

 {

 "responses": [

 {

 "query": "string",

 "totalCount": 0,

 "startIndex": 0,

 "count": 0,

 "items": [

 {}

],

 "source": "string",

 "facets": [

 {

 "name": "string",

 "fields": [

 {

 "label": "string",

Deliverable D2.4

Access APIs

 Page 22 of 79

 "count": 0

 }

]

 }

],

 "filters": [

 [

 {

 "filterName": "string",

 "filterID": "string",

 "suggestedValues": [

 {

 "value": "string",

 "count": 0

 }

]

 }

]

]

 }

],

 "filters": [

 {

 "filterName": "string",

 "filterID": "string",

 "suggestedValues": [

 {

 "value": "string",

 "count": 0

 }

]

 }

]

 }

]

Response Messages

400 Bad request (invalid json)

Retrieve initial filters for a search

Method Call Description

POST /api/initialfilters Retrieve a JSON with the filters you can use for faceted

search in the query. This call requires a body parameter with

the sources you will need to process.

Deliverable D2.4

Access APIs

 Page 23 of 79

Body Sample Response Sample

{

 "source": [

 "Europeana"

]

}

[

 [

 {

 "filterName": "string",

 "filterID": "string",

 "suggestedValues": [

 {

 "value": "string",

 "count": 0

 }

]

 }

]

]

Response Messages

400 Bad request (invalid json)

Retrieve the list of available search sources

Method Call Description

GET /api/searchsources Retrieve a JSON with the list of sources that WITH currently

supports for federated searches.

Parameters Response Sample

 [

 "string"

]

Response Messages

400 Bad request (invalid json)

Deliverable D2.4

Access APIs

 Page 24 of 79

DBPedia Lookup

Method Call Description

GET /source/dbpedia/lookup

Returns an array of dbpedia entities that match a given term

and type query. Each returned result contains the terms of

the query in its label field, and belongs to at least one of the

specified types. The type is a dbpedia ontology class, without

the dbpedia prefix (e.g. Person, Place, etc).

Parameters Response Sample

query (required): string

the desired query

type (required): string

a comma separated list of the types of

the result.

start: integer

offset (default 0)

count: integer

count (default 10)

/source/dbpedia/lookup?type=Person&query=da

Vinci&start=0&count=5

{"totalcount":5,"results":[{"uri":"http://dbpedia.org/resource

/Paul_Da_Vinci","label":{"en":["Paul Da

Vinci"]},"abstract":{"en":["Paul Da Vinci (born Paul Leonard

Prewer, 1951) is a British singer and musician. He is best

known as the lead singer on the 1974 hit recording by The

Rubettes, \"Sugar Baby Love\", although he did not perform

with the group at the time. He reportedly had a three-and-a-

half octave vocal range, and worked as a demo and session

singer before and after his own moderately successful solo

career, which included the UK hit \"Your Baby Ain't Your Baby

Anymore.\""]},"birthplace":["http://dbpedia.org/resource/En

gland","http://dbpedia.org/resource/Essex","http://dbpedia.

org/resource/Thurrock"],"type":["http://dbpedia.org/ontolog

y/Person","http://dbpedia.org/ontology/MusicalArtist","http:

//dbpedia.org/ontology/Artist","http://dbpedia.org/ontology

/Agent"],"subject":["http://dbpedia.org/resource/Category:1

951_births","http://dbpedia.org/resource/Category:English_

male_singers","http://dbpedia.org/resource/Category:English

_pop_singers","http://dbpedia.org/resource/Category:Living_

people"]}, ...]}

Response Messages

500 Internal Server Error (lookup failure)

Deliverable D2.4

Access APIs

 Page 25 of 79

4.3.2 Record

Retrieve a record

Method Call Description

GET /record/{recordId} Retrieve a JSON with the metadata of the record specified in

the path, by its Id. To retrieve the Ids of records in

collections, you can use the collection/{colId}/list call and see

the dbid field in the response. Many different serializations

are available for the record's metadata. To select one, or

more of them, use the "format" parameter. The different

serializations will appear in the "content" field in the record

response.

Parameters Response Sample

recordId: string

The id of the record

format: array

The serialization of the response. One of

the following: JSON_UNKNOWN,

JSONLD_UNKNOWN, XML_UNKNOWN,

JSON_EDM, JSONLD_EDM, XML_EDM,

JSONLD_DPLA, JSON_NLA, XML_NLA,

JSON_DNZ, XML_DNZ, JSON_YOUTUBE,

“UKNOWN”, “all”. If not specified, no

content is returned, only basic collection

fields.

{

 "dbId": "string",

 "resourceType": "WithResource",

 "collectedIn": [

 {

 "collectionId": "string",

 "position": 0

 }

],

 "administrative": {

 "withURI": "string",

 "access": {

 "isPublic": true,

 "acl": [

 {

 "user": "string",

 "level": "READ"

 }

]

 },

 "withCreator": "string",

 "created": "string",

 "lastModified": "string",

 "underModeration": {

 "key": {

 "isPublic": true,

 "acl": [

 {

 "user": "string",

 "level": "READ"

 }

]

Deliverable D2.4

Access APIs

 Page 26 of 79

 }

 },

 "externalId": "string",

 "parentResourceID": "string"

 },

 "usage": {

 "likes": 0,

 "collected": 0,

 "annotated": 0,

 "viewCount": 0,

 "tags": [

 "string"

]

 },

 "media": [

 {

 "type": "string",

 "withRights": "Public",

 "withUrl": "string",

 "url": "string",

 "height": 0,

 "width": 0,

 "mediaVersion": "string",

 "originalRights": {

 "uri": "value"

 },

 "mimeType": "string",

 "size": 0,

 "quality": "UNKNOWN",

 "dbid": "string",

 "mediaBytes": "string",

 "codec": "string",

 "durationSeconds": 0,

 "spatialResolution": 0,

 "bitRate": 0,

 "frameRate": 0,

 "colorSpace": "string",

 "componentColor": "string",

 "orientation": "string",

 "audioChannelNumber": 0,

 "sampleSize": 0,

 "sampleRate": 0

 }

],

 "descriptiveData": {

 "label": {

 "default": [

 "string"

Deliverable D2.4

Access APIs

 Page 27 of 79

],

 "en": [

 "string"

]

 },

 "description": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "keywords": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "isShownAt": {

 "uri": "value"

 },

 "isShownBy": {

 "uri": "value"

 },

 "metadataRights": {

 "uri": "value"

 },

 "rdfType": "string",

 "dctype": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "sameAs": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dates": [

Deliverable D2.4

Access APIs

 Page 28 of 79

 "string"

],

 "altLabels": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccreator": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dctermsaudience": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dclanguage": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccoverage": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dcrights": {

 "default": [

 "string"

],

 "en": [

 "string"

Deliverable D2.4

Access APIs

 Page 29 of 79

]

 },

 "dctermsspatial": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccontribution": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dcformat": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dctermsmedium": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dcIsRelatedTo": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccreated": [

 {

 "isoDate": "string",

 "year": 0,

 "epoch": {

 "uri": "value"

Deliverable D2.4

Access APIs

 Page 30 of 79

 },

 "approximation": 0,

 "uri": "string",

 "free": "string"

 }

],

 "dcdate": [

 {

 "isoDate": "string",

 "year": 0,

 "epoch": {

 "uri": "value"

 },

 "approximation": 0,

 "uri": "string",

 "free": "string"

 }

]

 },

 "withCreatorInfo": {

 "username": "string",

 "favorites": "string",

 "dbId": "string",

 "organizations": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

Deliverable D2.4

Access APIs

 Page 31 of 79

 "string"

]

 },

 "provenance": [

 {

 "provider": "string",

 "uri": "string",

 "resourceId": "string"

 }

],

 "content": {

 "key": "value"

 }

}

Response Messages

404 Not found (format not found)

500 Internal Server Error (database error)

Update a record

Method Call Description

PUT /record/{recordId} Update the metadata of an existing record, specified by its id

in the path. You only need to provide the fields you want

updated in the record body.

Parameters Response Sample

recordId: string

The id of the record

body: InternalRecord

Content type: application/json

 A JSON with the updated metadata

An object record in JSON (see previous call)

Response Messages

400 Bad Request (invalid json)

403 Forbidden (no edit permissions)

500 Internal Server Error (database error)

Get a list of your favourite records

Method Call Description

GET /collection/favorites This will return an array of Ids for all the favourited records

of the logged in user.

Deliverable D2.4

Access APIs

 Page 32 of 79

Parameters Response Sample

 [

 "string"

]

Response Messages

400 Bad Request (user or group cannot be found)

Retrieve all records in a collection

Method Call Description

GET /collection/{collectionId}/list Retrieves all records from the collection specified in the path

and returns an array of record objects. Record metadata can

be available in different serializations. The format parameter

defines this serialization in the records array field of the

JSON response. See GET /record/{recordId}. If the format

parameter is empty, only the internal record will be provided

in the WITH model.

Parameters Response Sample

collectionId (required): string

Id of the collection

start: integer

offset

count: integer

count (default 10)

format: string

One of the following: JSON_UNKNOWN,

JSONLD_UNKNOWN, XML_UNKNOWN,

JSON_EDM, JSONLD_EDM, XML_EDM,

JSONLD_DPLA, JSON_NLA, XML_NLA,

JSON_DNZ, XML_DNZ, JSON_YOUTUBE,

“UKNOWN”, “all”. If not specified, no

content is returned, only basic collection

fields.

{

 "entryCount": 0,

 "records": [

 {}

]

}

Response Messages

403 Forbidden (invalid collection id, no read access)

500 Internal Server Error (cannot retrieve records from

 database)

Deliverable D2.4

Access APIs

 Page 33 of 79

Create a new record and add it to a collection

Method Call Description

POST /collection/{collectionId}/addRecord Adds a record to the collection specified in the path,

creating a new internal record that contains the

submitted metadata. You will need to be logged in

and have write access or be the owner of the

collection in order to add records to it. Note that calls

to this path can also be used for exhibitions. Position

is a Mandatory field for exhibitions, the default is 0

i.e. the record will be displayed first.

IMPORTANT

This is the preferred way to create a new record!

Different serializations for the new record will be

created automatically and can be retrieved with GET

/record/{recordId}. You do not need to provide

values for all the available fields. Finally, please note

that this call will only return a message. To see the

collection and the new record, you will need to use

GET /collection/{collectionId}/list and parse the

results for a list of the record metadata in the

collection and the corresponding record dbids. For

individual record metadata, use GET

/record/{recordId} with the dbids retrieved.

Parameters Response Sample

collectionID (required): string

Id of the collection

position: integer

offset

body: InternalRecord

Content type: application/json

Record JSON schema

{

 "message": "string"

}

Response Messages

400 Bad Request (no position in exhibition,

constraint

 violation)

403 Forbidden (no permission to edit collection)

500 Internal Server Error (cannot save to

database)

Deliverable D2.4

Access APIs

 Page 34 of 79

Remove a record from a collection

Method Call Description

DELETE /collection/{collectionId}/removeRecord Removes the record in the specified position, from

a specified collection (path). Note that calls to this

path can also be used for exhibitions.

Parameters Response Sample

collectionID (required): string

Id of the collection

position: integer

offset

recordID (required): string

Id of the record

{

 "message": "string"

}

Response Messages

403 Forbidden (no permission to edit

collection)

500 Internal Server Error (no or wrong record

Id, cannot delete from database, exception error)

4.3.3 Collection and Exhibition

Get a list of collections

Method Call Description

GET /collection/list This call returns a list of all the accessible collections (at least

read access) to the logged in user. Using the parameter

filters, you can narrow down the collections associated with

a specific user. All filters are optional. Since this call has

many parameters it is suggested that all descriptions are

worked through ahead of use.

Parameters Response Sample

directlyAccessedByUserOrGroup: string

{"username": "name", "rights": "OWN"}

Filters returned collections based on the

specified rights for each user in the

input array of JSON objects. Each user

needs to have direct access rights to this

collection and not through a user group

(organization or project).

recursivelyAccessedByUserOrGroup:

string

Works like

{

 "collectionsOrExhibitions": [

 {}

]

}

Response Messages

500 Internal Server Error

Deliverable D2.4

Access APIs

 Page 35 of 79

directlyAccessedByUserName with the

difference that access rights can be

inherited from a user group to which a

user belongs.

creator: string

Filters retrieved collections based on

their '''ownerId''' field, i.e. the Id of the

user that created the collection.

isPublic: boolean

If true returns only public collections, if

false or unspecified this filter remains

inactive.

IsExhibition: boolean

If true returns only exhibitions, if false

only collections and if unspecified

returns both.

CollectionHits: boolean

If true returns the total numbers of

exhibitions and/or collections this call

may return (limited by the count).

Default is 'false'.

offset: integer

Offset.

count: integer

Count (default 10).

Get a list of collections shared with the user

Method Call Description

GET /collection/listShared This call returns a list of all the collections that have been

shared with the logged-in user. This means, the user did not

create these collections but has been given access rights to

it. The filters are similar to the collection/list call. Using the

parameter filters, you can narrow down the collections

associated with a specific user. All filters are optional.

Deliverable D2.4

Access APIs

 Page 36 of 79

Parameters Response Sample

direct: boolean

If set to true, only collections shared

directly (i.e. not via user groups) with

the logged-in user will be shown.

Default value is false.

directlyAccessedByUserOrGroup: string

{"username": "name", "rights": "OWN"}

Filters returned collections based on the

specified rights for each user in the

input array of JSON objects. Each user

needs to have direct access rights to this

collection and not through a user group

(organization or project).

recursivelyAccessedByUserOrGroup:

string

Works like

directlyAccessedByUserName with the

difference that access rights can be

inherited from a user group to which a

user belongs.

creator: string

Filters retrieved collections based on

their '''ownerId''' field, i.e. the Id of the

user that created the collection.

IsExhibition: boolean

If true returns only exhibitions, if false

only collections and if unspecified

returns both.

CollectionHits: boolean

If true returns the total numbers of

exhibitions and/or collections this call

may return (limited by the count).

Default is 'false'.

offset: integer

Offset.

count: integer

Count (default 10).

{

 "collectionsOrExhibitions": [

 {}

]

}

Response Messages

403 Forbidden (user not specified)

Deliverable D2.4

Access APIs

 Page 37 of 79

Get a list of your favourite records

Method Call Description

GET /collection/favorites This will return an array of Ids for all the favourited records

of the logged in user.

Parameters Response Sample

 [

 "string"

]

Response Messages

400 Bad Request (user or group cannot be found)

Retrieve all users that have access to a collection

Method Call Description

GET /collection/{collectionId}/listUsers Retrieves an array with all the users that have access to

this collection and their access rights.

Parameters Response Sample

collectionID (required): string

Id of the collection.

[

 [

 {

 "category": "user",

 "userId": "string",

 "firstName": "string",

 "lastName": "string",

 "username": "string",

 "accessRights": "READ"

 }

]

]

Response Messages

403 Forbidden (invalid collection id, no read

access)

500 Internal Server Error (cannot retrieve records

from database)

Deliverable D2.4

Access APIs

 Page 38 of 79

Delete a collection

Method Call Description

DELETE /collection/{collectionId} Removes a collection from the database. Records that were

created into this collection will also be deleted. Note that

calls to this path can also be used for exhibitions.

Parameters Response Sample

collectionID (required): string

Id of the collection

{

 "message": "string"

}

Response Messages

403 Forbidden (no read-access)

500 Internal Server Error (database error)

Retrieve collection metadata

Method Call Description

GET /collection/{collectionId} Returns the metadata of the collection specified in path.

Note that calls to this path can also be used for exhibitions.

Parameters Response Sample

collectionID (required): string

Id of the collection.

{

 "dbId": "string",

 "resourceType": "WithResource",

 "collectedIn": [

 {

 "collectionId": "string",

 "position": 0

 }

],

 "administrative": {

 "withURI": "string",

 "access": {

 "isPublic": true,

 "acl": [

 {

 "user": "string",

 "level": "READ"

 }

]

 },

Deliverable D2.4

Access APIs

 Page 39 of 79

 "withCreator": "string",

 "created": "string",

 "lastModified": "string",

 "underModeration": {

 "key": {

 "isPublic": true,

 "acl": [

 {

 "user": "string",

 "level": "READ"

 }

]

 }

 },

 "externalId": "string",

 "parentResourceID": "string"

 },

 "usage": {

 "likes": 0,

 "collected": 0,

 "annotated": 0,

 "viewCount": 0,

 "tags": [

 "string"

]

 },

 "media": [

 {

 "type": "string",

 "withRights": "Public",

 "withUrl": "string",

 "url": "string",

 "height": 0,

 "width": 0,

 "mediaVersion": "string",

 "originalRights": {

 "uri": "value"

 },

 "mimeType": "string",

 "size": 0,

 "quality": "UNKNOWN",

 "dbid": "string",

 "mediaBytes": "string",

 "codec": "string",

 "durationSeconds": 0,

 "spatialResolution": 0,

 "bitRate": 0,

 "frameRate": 0,

Deliverable D2.4

Access APIs

 Page 40 of 79

 "colorSpace": "string",

 "componentColor": "string",

 "orientation": "string",

 "audioChannelNumber": 0,

 "sampleSize": 0,

 "sampleRate": 0

 }

],

 "descriptiveData": {

 "label": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "description": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "keywords": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "isShownAt": {

 "uri": "value"

 },

 "isShownBy": {

 "uri": "value"

 },

 "metadataRights": {

 "uri": "value"

 },

 "rdfType": "string",

 "dctype": {

 "default": [

 "string"

],

 "en": [

Deliverable D2.4

Access APIs

 Page 41 of 79

 "string"

]

 },

 "sameAs": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dates": [

 "string"

],

 "altLabels": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccreator": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dctermsaudience": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dclanguage": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccoverage": {

 "default": [

Deliverable D2.4

Access APIs

 Page 42 of 79

 "string"

],

 "en": [

 "string"

]

 },

 "dcrights": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dctermsspatial": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dccontribution": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dcformat": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dctermsmedium": {

 "default": [

 "string"

],

 "en": [

 "string"

]

 },

 "dcIsRelatedTo": {

 "default": [

Deliverable D2.4

Access APIs

 Page 43 of 79

 "string"

],

 "en": [

 "string"

]

 },

 "dccreated": [

 {

 "isoDate": "string",

 "year": 0,

 "epoch": {

 "uri": "value"

 },

 "approximation": 0,

 "uri": "string",

 "free": "string"

 }

],

 "dcdate": [

 {

 "isoDate": "string",

 "year": 0,

 "epoch": {

 "uri": "value"

 },

 "approximation": 0,

 "uri": "string",

 "free": "string"

 }

]

 },

 "withCreatorInfo": {

 "username": "string",

 "favorites": "string",

 "dbId": "string",

 "organizations": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

Deliverable D2.4

Access APIs

 Page 44 of 79

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

 "string"

]

 },

 "provenance": [

 {

 "provider": "string",

 "uri": "string",

 "resourceId": "string"

 }

],

 "content": {

 "key": "value"

 }

}

Response Messages

403 Forbidden (no read-access)

500 Internal Server Error(database error)

Create a new collection

Method Call Description

POST /collection This call will create a new collection with an item and store it

in the database. Please use with caution as testing with this

call will update your current collections!

Deliverable D2.4

Access APIs

 Page 45 of 79

Parameters Response Sample

CollectionType: string

Simple collection (default) or exhibition

body (required): collection record

Content type: application/json

{

 "collection": {}

}

Response Messages

403 Forbidden (no read-access)

500 Internal Server Error(database error)

Update metadata in a collection

Method Call Description

POST /collection/{collectionId} Use this call to change the stored metadata of a collection.

Note that calls to this path can also be used for exhibitions.

Parameters Response Sample

collectionID (required): string

Id of the collection

body (required): collection record

Content type: application/json

New collection/exhibition metadata.

Only provide the fields you wish to be

changed.

{

 "owner": "string",

 "access": "string",

 "collection": {}

}

Response Messages

400 Bad Request (null/invalid JSON, duplicate title,

 wrong JSON fields)

403 Forbidden (no read-access)

500 Internal Server Error (database error)

Change access rights to a collection

Method Call Description

POST /rights/{collectionId}/{right} Changes access rights: "none" (withdraws previously given

rights), "read", "write", "own", of a specified user

(parameter) for a specified collection (in path). Only the

owner of a collection can use this call (you need to be logged

in). Just one of username, email or userId needs to be

provided.

Deliverable D2.4

Access APIs

 Page 46 of 79

Parameters Response Sample

collectionID (required): string

Id of the collection

right (required): string

Values: "none" (withdraws previously

given rights), "read", "write", "own".

username: string

Username of user whose rights are

changed.

membersDowngrade: boolean

Downgrade access for members. Default

is false.

{

 "message”: “string”

}

Response Messages

400 Bad Request (no user specified)

403 Forbidden (no owner rights)

500 Internal Server Error (read/write database error)

Retrieve all records in a collection ordered by degree of similarity to a given record

Method Call Description

GET /collection/{collectionId}/simi

larlist

Retrieves all records from the collection specified in the path

and returns an array of record objects. The records in the

array are ordered by decreasing degree of similarity to the

specified record. The similarity is computed using the record

metadata contents. Record metadata can be available in

different serializations. The format parameter defines this

serialization in the records array field of the JSON response.

See GET /record/{recordId}. If the format parameter is empty,

only the internal record will be provided in the WITH model.

Parameters Response Sample

collectionId (required): string

Id of the collection

itemid (required): string

Id of the item for which the similar list

will be returned

start: integer

offset (default 0)

count: integer

{"entryCount": 13489,"records": [

{"administrative":{"withURI":"/record/56fa7b91c743431f1cd

72646","externalId":"/2048207/9999","parentResourceId":nu

ll,"access":{"isPublic":true,"acl":[]},"withCreator":null,"create

d":"2016/03/29","lastModified":"2016/03/29"},"collectedIn":

[{"position":0,"collectionId":"56fa7b8fc743431f1cd72645"}],"

usage":{"likes":0,"collected":1,"annotated":0,"viewCount":0,"

tags":null},"provenance":[{"provider":"Rossimoda Shoe

Museum","uri":"http://www.europeana.eu/api/ANnuDzRpW

/redirect?shownAt=http%3A%2F%2Fwww.europeanafashion.

eu%2Frecord%2Fa%2F27f4b8d9b0b959714e2c18675ebc013a

70d647485b46b878ce860fafcd490b76&provider=Europeana+

Fashion&id=http%3A%2F%2Fwww.europeana.eu%2Fresolve

%2Frecord%2F2048207%2F9999&profile=rich+facets","resou

rceId":null},{"provider":"Europeana

Deliverable D2.4

Access APIs

 Page 47 of 79

count (default 10)

format: string

One of the following: JSON_UNKNOWN,

JSONLD_UNKNOWN, XML_UNKNOWN,

JSON_DNZ, XML_DNZ, JSON_YOUTUBE,

“UKNOWN”, “all”. If not specified, no

content is returned, only basic

collection fields.

Fashion","uri":null,"resourceId":null},{"provider":"Europeana"

,"uri":"http://www.europeana.eu/portal/record/2048207/99

99.html","resourceId":"/2048207/9999"}],"resourceType":"C

ulturalObject","descriptiveData":{"description":{"default":["vi

tello nero, camoscio nero e accessorio dorato / black calf,

black suede and golden accessory"],"it":["vitello nero,

camoscio nero e accessorio dorato / black calf, black suede

and golden

accessory"]},"isShownAt":{"uri":"http://www.europeana.eu/a

pi/ANnuDzRpW/redirect?shownAt=http%3A%2F%2Fwww.eur

opeanafashion.eu%2Frecord%2Fa%2F27f4b8d9b0b959714e2

c18675ebc013a70d647485b46b878ce860fafcd490b76&provi

der=Europeana+Fashion&id=http%3A%2F%2Fwww.european

a.eu%2Fresolve%2Frecord%2F2048207%2F9999&profile=full"

},"isShownBy":{"uri":"http://repos.europeanafashion.eu/rossi

moda/images/09999.JPG"},"metadataRights":{"uri":"http://cr

eativecommons.org/publicdomain/zero/1.0/"},"rdfType":"htt

p://www.europeana.eu/schemas/edm/ProvidedCHO","count

ry":{"default":["italy"],"unknown":["italy"]},"dcidentifier":{"de

fault":["9999"],"unknown":["9999"]},"dclanguage":{"default":

["Italian"],"en":["Italian"]},"dctype":{"default":["boots"],"en":

["boots"],"it":["stivale a

tubo"],"uri":["http://thesaurus.europeanafashion.eu/thesaur

us/10261"]},"dccreator":{"default":["not found","non

identificato (Designer)"],"en":["not found"],"it":["non

identificato

(Designer)"]},"dccontributor":{"default":["Rossimoda"],"unkn

own":["Rossimoda"]},"dcformat":{"default":["Color:

black"],"en":["Color:

black"],"uri":["http://thesaurus.europeanafashion.eu/thesaur

us/10401"]}},"media":[{"Thumbnail":{"width":0,"height":0,"ty

pe":"IMAGE","withRights":"Creative","url":"http://repos.euro

peanafashion.eu/rossimoda/images/09999.JPG","mediaVersi

on":"Thumbnail","originalRights":{"uri":"http://creativecomm

ons.org/licenses/by-nc-

nd/3.0/"},"size":0,"withUrl":"/media/byUrl?url=http://repos.e

uropeanafashion.eu/rossimoda/images/09999.JPG&version=

Thumbnail","mimeType":"image/*"},"Original":{"width":0,"he

ight":0,"type":"IMAGE","withRights":"Creative","url":"http://r

epos.europeanafashion.eu/rossimoda/images/09999.JPG","m

ediaVersion":"Original","originalRights":{"uri":"http://creative

commons.org/licenses/by-nc-

nd/3.0/"},"size":0,"withUrl":"/media/byUrl?url=http://repos.e

uropeanafashion.eu/rossimoda/images/09999.JPG&version=

Original","mimeType":"image/*"}}],"dbId":"56fa7b91c743431

f1cd72646"}, ...]}

Deliverable D2.4

Access APIs

 Page 48 of 79

Response Messages

403 Forbidden (invalid collection id, no read access)

500 Internal Server Error (cannot retrieve records from

database)

4.3.4 User

Create new user

Method Call Description

POST /user/register Creates a new user and stores at the database.

Body Sample Response Sample

{

 "firstName": "string",

 "lastName": "string",

 "username": "string",

 "email": "string",

 "password": "string",

 "gender": "string",

 "facebookId": "string",

 "googleID": "string",

 "about": "string",

 "location": "string"

}

{

 "email": "string",

 "firstName": "string",

 "lastName": "string",

 "gender": "string",

 "facebookId": "string",

 "googleID": "string",

 "md5Password": "string",

 "username": "string",

 "favorites": "string",

 "organizations": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

Deliverable D2.4

Access APIs

 Page 49 of 79

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

 "string"

]

}

Response Messages

400 Bad Request (json object describes all errors)

User login

Method Call Description

POST /user/login Log a user in (create a browser cookie). Some API calls do not

take the user as a parameter and you need to be logged in

first. You can log in with your google or Facebook id. The

email parameter can be a username.

Body Sample Response Sample

{

 "email": "string",

 "password": "string",

 "googleId": "string",

 "facebookId": "string"

}

{

 "email": "string",

 "firstName": "string",

 "lastName": "string",

 "gender": "string",

 "facebookId": "string",

 "googleID": "string",

 "md5Password": "string",

 "username": "string",

 "favorites": "string",

 "organizations": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

Deliverable D2.4

Access APIs

 Page 50 of 79

 }

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

 "string"

]

}

Response Messages

400 Bad Request (error status, problem description

 in JSON object)

User logout

Method Call Description

GET /user/logout Browser cookie is removed, user is logged out (all session

information is kept in cookie, nothing is stored on server).

Parameters Response Sample

Response Messages

200 OK

Check email availability

Method Call Description

GET /user/emailAvailable Used when registering a new user, checks if there has been

another user with the same email already stored in the

database.

Deliverable D2.4

Access APIs

 Page 51 of 79

Parameters Response Sample

email (required): string

Response Messages

200 OK

400 Bad Request (not available)

Delete a user

Method Call Description

DELETE /user/{userId} Removes a user from the database. (This call is not allowed

at the moment.)

Parameters Response Sample

userId (required): string

Internal ID of the user.

{

 "message": "string"

}

Response Messages

400 Bad Request (user does not exist)

Get user details

Method Call Description

GET /user/{userId} Returns the complete entry of a user specified by the id

provided in the path.

Parameters Response Sample

userId (required): string

Internal ID of the user.

{

 "email": "string",

 "firstName": "string",

 "lastName": "string",

 "gender": "string",

 "facebookId": "string",

 "googleID": "string",

 "md5Password": "string",

 "username": "string",

 "favorites": "string",

 "organizations": [

Deliverable D2.4

Access APIs

 Page 52 of 79

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

 "string"

]

}

Response Messages

400 Bad Request (user does not exist, exception error)

Update a user entry

Method Call Description

PUT /user/{userId} Updates the stored info of the user specified by the id

provided in the path.

Parameters Response Sample

userId (required): string

Internal ID of the user.

Body (required): user record

Content type: application/json

New user entry.

{

 "email": "string",

 "firstName": "string",

 "lastName": "string",

 "gender": "string",

 "facebookId": "string",

Deliverable D2.4

Access APIs

 Page 53 of 79

 "googleID": "string",

 "md5Password": "string",

 "username": "string",

 "favorites": "string",

 "organizations": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "projects": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroups": [

 {

 "id": "string",

 "username": "string",

 "friendlyName": "string"

 }

],

 "usergroupsIds": [

 "string"

],

 "adminGroups": [

 "string"

]

}

Response Messages

400 Bad Request (error status, problem description in

 JSON object)

Send a reset password email

Method Call Description

GET /user/resetPassword/{emailOrUserName} Sends an email to the user provided in the path.

The email contains a link to a webpage where

the user can provide a new password.

Deliverable D2.4

Access APIs

 Page 54 of 79

Parameters Response Sample

emailOrUserName (required): string {

 "message": "string"

}

Response Messages

400 Bad Request (invalid username or

email, could not

 send email)

404 Not Found (user email not found – if

user had

 originally registered with google or

 Facebook account)

Get an API key

Method Call Description

POST /user/apikey/create Sends an API key to the stored email address of the logged in

user.

Body Sample Response Sample

 {

 "email": "string"

}

Response Messages

400 Bad Request (no user logged in, email already sent

 in past, email exception error)

500 Internal Server Error (could not create API key)

Get the profile thumbnail of a user or group

Method Call Description

GET /user/{id}/photo Returns the photoId of the thumbnail the user or group use

in their profile.

Deliverable D2.4

Access APIs

 Page 55 of 79

Parameters Response Sample

id (required): string

User or group id.

{

 "photoId": "string"

}

Response Messages

400 Bad Request (user or group do not exist)

Find a user or group by name or email

Method Call Description

GET

/user/findByUserOrGroupNameOrEmail

Returns a JSON object with metadata for a group

or a user that have the specified user/group name

or email address. This call can be applied to all

group types, i.e. organizations and projects. An

optional functionality of this call is to check what

access rights a group or user has to a collection.

Just use the collectionId parameter. The access

rights will be returned as an extra field named

accessRights in the group or user JSON response.

Parameters Response Sample

userOrGroupNameOrEmail (required): string

User or group name or email.

collectionId: string

A collection id to check for access rights.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no user or group found)

Deliverable D2.4

Access APIs

 Page 56 of 79

Find a user or group by name or email (autocomplete)

Method Call Description

GET /user/listNames This call is mainly used for autocomplete functions. It returns

an array of JSON objects that contain users and groups

whose names match the prefix, as well a category field with

values "user" or "group". This call can be applied to all group

types, i.e. organizations and projects. The onlyParents

parameter filters results so that only groups or users that

contain other groups or users are shown.

Parameters Response Sample

prefix: string

Optional prefix of user or group name.

onlyParents: boolean

If true filters results to groups and users

that have other subgroups or sub-users.

[

 {

 "value": "string",

 "data": {

 "category": "string"

 }

 }

]

4.3.5 User Groups

Create a new group

Method Call Description

POST /group/create Creates a new group and stores it at the database. Every

group should have an administrator. Projects and

organizations are different group types, to create one of

those see their respective calls.

Parameters Response Sample

adminId (required): string

User ID of the group administrator.

adminUsername (required): string

Username of the group administrator.

body (required): Group

Group metadata.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

Deliverable D2.4

Access APIs

 Page 57 of 79

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request(invalid JSON, did not specify group

 admin, duplicate group name or no name provided)

500 Internal Server Error (cannot save to database)

Find a user group by name

Method Call Description

GET /group/findByGroupName Returns a JSON object with metadata for the group that has

the specified name. This call can be applied to all group

types, i.e. organizations and projects. An optional

functionality of this call is to check what access rights a

group has to a collection by filling the collectionId

parameter. The access rights will be returned as an extra

field named accessRights in the group JSON response.

Parameters Response Sample

name (required): string

Group name or email.

collectionId: string

A collection id to check for access rights.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no group found)

Deliverable D2.4

Access APIs

 Page 58 of 79

Find subgroups of a group

Method Call Description

GET /group/descendantGroups/{groupId} Retrieves the specified group's descendant groups in

the group hierarchy. See also

/group/addUserOrGroup/{groupId}.

Parameters Response Sample

groupId (required): string

direct: boolean

Only direct descendants (default is true)

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no group found)

Delete a group

Method Call Description

DELETE /group/{groupId} Removes a group from the database. Only the group admin

can delete the group. This call can be applied to all group

types, i.e. organizations and projects.

Parameters Response Sample

groupId (required): string

Internal ID of the user.

{

 "OK": "string"

}

Response Messages

403 Forbidden (only group admins can edit groups)

500 Internal Server Error (cannot edit database)

Deliverable D2.4

Access APIs

 Page 59 of 79

Retrieve group info

Method Call Description

GET /group/{groupId} Retrieves attributes of a group from the database. This call

can be applied to all group types, i.e. organizations and

projects.

Parameters Response Sample

groupId (required): string

ID of the group.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no group found)

500 Internal Server Error (cannot retrieve or save to

 database)

Edit a group

Method Call Description

PUT /group/{groupId} Changes attributes of an existing group. You only need to

provide the fields you want to change. Only the

administrator of a group has the right to edit it. This call can

be applied to all group types, i.e. organizations and projects.

Parameters Response Sample

groupId (required): string

ID of the group.

Body (required): Group

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

Deliverable D2.4

Access APIs

 Page 60 of 79

Content type: application/json

New group metadata. You only need to

provide the fields you want to change

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (invalid JSON, duplicate group name or

 no name provided)

403 Forbidden (only group admins can edit groups)

500 Internal Server Error (cannot retrieve or save to

 database)

Add a user or another group to a group

Method Call Description

PUT /group/addUserOrGroup/{groupId} Adds a user or a group to the group with the group ID

specified in the path. This call can be applied to all

group types, i.e. organizations and projects. This way

you can create a group hierarchy with organizations

that belong to projects and different user groups that

belong to organizations.

Parameters Response Sample

Id (required): string

User or group ID to add in group.

groupId (required): string

ID of the group.

{

 "OK": "string"

}

Response Messages

400 Bad Request (wrong user or group id)

403 Forbidden (only group admins can edit

groups)

500 Internal Server Error (cannot retrieve or write

to

 database)

Deliverable D2.4

Access APIs

 Page 61 of 79

Remove a user from a group

Method Call Description

PUT /group/removeUserOrGroup/{groupId} Removes a user from a group with the group ID

specified in the path. This call can be applied to all

group types, i.e. organizations and projects.

Parameters Response Sample

Id (required): string

User or group ID to add in group.

groupId (required): string

ID of the group.

{

 "OK": "string"

}

Response Messages

403 Forbidden (no rights for removal)

500 Internal Server Error (cannot retrieve or

write to

 database)

Request to join a group

Method Call Description

PUT /group/join/{groupId} Request to join the group specified by the ID in the path. The

group admin will have to accept your request before you

join. This call can be applied to all group types, i.e.

organisations and projects.

Parameters Response Sample

groupId (required): string

ID of the group.

{

 "OK": "string"

}

Response Messages

500 Internal Server Error (cannot retrieve or write to

database)

Deliverable D2.4

Access APIs

 Page 62 of 79

Leave a group

Method Call Description

PUT /group/leave/{groupId} Leave the group specified by the ID in the path. This call can

be applied to all group types, i.e. organizations and

projects.

Parameters Response Sample

groupId (required): string

ID of the group.

{

 "OK": "string"

}

Response Messages

500 Internal Server Error (cannot retrieve or write to

database)

4.3.6 Organization and Project

Create a new organization

Method Call Description

POST /organization/create Creates a new organization and stores it at the database.

Projects and generic groups are different group types, to

create one of those see their respective calls.

Parameters Response Sample

adminId (required): string

User ID of the group administrator.

adminUsername (required): string

Username of the group administrator.

body (required): Group

Group metadata.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Deliverable D2.4

Access APIs

 Page 63 of 79

Response Messages

400 Bad Request(invalid JSON, did not specify group

 admin, duplicate group name or no name provided)

500 Internal Server Error (cannot save to database)

Find subgroups of an organization

Method Call Description

GET

/group/descendantOrganizations/{groupId}

Retrieves the specified group's descendant

groups in the group hierarchy. See also

/group/addUserOrGroup/{groupId}.

Parameters Response Sample

groupId (required): string

direct: boolean

Only direct descendants (default is true)

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no group found)

Create a new project

Method Call Description

POST /project/create Creates a new project and stores it at the database.

Organizations and generic groups are different group types,

to create one of those see their respective calls.

Deliverable D2.4

Access APIs

 Page 64 of 79

Parameters Response Sample

adminId (required): string

User ID of the group administrator.

adminUsername (required): string

Username of the group administrator.

body (required): Group

Group metadata.

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request(invalid JSON, did not specify group

 admin, duplicate group name or no name provided)

500 Internal Server Error (cannot save to database)

Find subgroups of a project

Method Call Description

GET

/group/descendantProjects/{groupId}

Retrieves the specified project's descendant groups

in the group hierarchy. See also

/group/addUserOrGroup/{groupId}.

Parameters Response Sample

groupId (required): string

direct: boolean

Only direct descendants (default is true)

{

 "username": "string",

 "about": "string",

 "privateGroup": true,

 "dbId": "string",

 "thumbnail": "string",

 "adminIds": [

 "string"

],

 "users": [

 "string"

],

Deliverable D2.4

Access APIs

 Page 65 of 79

 "parentGroups": [

 "string"

]

}

Response Messages

400 Bad Request (no group found)

4.3.7 Media

Upload new media

Method Call Description

POST /media/create Upload a new media object (currently only supports images).

This call works in two ways. You can either upload a file or

provide an external url to a file. An IMPORTANT difference is

that when uploading a file, the request should be a

multipart/form-data. When creating from a url however, it

should be a JSON body. In both cases, the fields are the

same.

You can optionally provide rights for the media, if none are

provided the default value will be "UNKNOWN". Technical

metadata for the new media will be automatically extracted.

The returned object for this call is a list of URLs that point to

the cached media object and its various representations. You

can use the "original" url to create a record with the new

media. The media ID is encoded in that url.

Body Sample Response Sample

{

 “url”: “string”,

 “withMediaRights”: “string”

}

[

{

 "original": "string",

 "tiny": "string",

 "square": "string",

 "thumbnail": "string",

 "medium": "string"

}

]

Response Messages

400 Bad Request (invalid request)

500 Internal Server Error (database error)

Deliverable D2.4

Access APIs

 Page 66 of 79

Get metadata for a media object

Method Call Description

GET /media/{mediaId} Returns the metadata for the media object specified by the

mediaId. The response of the "media/create" call contains

values that are url paths to this call. The response depends

on the “file” parameter's value. If true, it returns the media

file, if false it returns the media metadata as indicated in the

response sample.

Parameters Response Sample

file: boolean

If true a file will be returned, if false the

call returns a media metadata JSON.

{

 "width": 0,

 "height": 0,

 "type": "string",

 "withRights": "string",

 "url": "string",

 "size": 0,

 "durationSeconds": 0,

 "spatialResolution": 0,

 "bitRate": 0,

 "frameRate": 0,

 "audioChannelNumber": 0,

 "sampleSize": 0,

 "sampleRate": 0,

 "withUrl": "string",

 "mimeType": "string"

}

Response Messages

400 Bad Request (invalid request)

500 Internal Server Error (database error)

Delete metadata for a media object

Method Call Description

DELETE /media/{mediaId} Removes the database entry for the media object specified

by the url parameter.

Parameters Response Sample

mediaId: string

The id of the media

{

 "message": "string"

}

Deliverable D2.4

Access APIs

 Page 67 of 79

Response Messages

400 Bad Request (invalid request)

500 Internal Server Error (database error)

4.4 INTERACTIVE DOCUMENTATION USING SWAGGER

Swagger is a framework for representing a RESTful API through a formal specification and then

using this with a set of tools it offers. It can automatically extract the API schema from many

programming languages, create interactive documentations and offers many other

functionalities. In the WITH case, the API schema is specified top down using the provided

editor which uses the YAML language to script the definitions. This definition is then translated

to a JSON structure automatically from the editor and used in two different user interfaces in

the developers page of the application.

4.4.1 API Keys

API keys are special parameters in the requests that authenticate the origin of the call,

therefore each call to the WITH API needs an API key. Access to the API is open, so any

registered user can request a key from the developers page (see next section). Clicking on the

“Request an api key” button will result to an email being sent with the API key. If a user

already has an API key but forgot it, they will need to send an email in order to get a new one.

API keys can be provided to the API in three ways. First, they can be provided with a simple

“apikey” parameter in each request. Second, they can be stored in a session cookie which the

back-end sees and extracts from. These methods can be used by developers or for back-end

service communications. Neither of these methods is very secure however, so the WITH front-

end uses a different way to communicate with the back-end.

The WITH application (its UI and subsequently the Technical Space front-end), connects using

an API key to the back-end. This key should not really be made available publicly, so a custom

transmission scheme is employed that encodes this key and obfuscates its extraction. The

back-end decodes the key, authenticates it, and then re-encodes it in a different obfuscation

scheme. Developers who wish to create third party web applications to be distributed to users,

will have access to certain JavaScript functions that perform this encoding, upon request and

verification.

4.4.2 Swagger UI

The main interface is using the Swagger UI responsive theme (Figure 4). This is chosen as the

main interface as the design is considered to be more intuitive to an unfamiliar user, and also

because of the good overview the left hand menu gives for the whole API options. The

secondary API-LITE (Figure 5) interface is the standard Swagger UI that is provided in the

swagger website. Both of those have some custom modifications, such as buttons to request

an API key. The biggest functionality these interfaces offer is the option to test the calls with

sample requests directly from the documentation page. However, depending on the

parameters a call may require, this may need additional configuration.

Deliverable D2.4

Access APIs

 Page 68 of 79

We present an example simple search call and its representation in the Swagger user

interfaces. The following image shows the main documentation page, and the one after shows

the lite version. Note that these pages offer the same information and functionalities, however

the first one has a better layout for exploring the API documentation, whereas the second is

faster for testing out calls.

Figure 4. API swagger documentation

Deliverable D2.4

Access APIs

 Page 69 of 79

Figure 5. API Swagger documentation – Lite view

In the main documentation page, on the left hand side there is a menu where all API calls are

sorted by category. Calls that cover two categories, for example the one that adds records to a

collection, can be duplicated. By clicking on a category and selecting a call, the middle of the

page displays a description of the call and all the path or header parameters it can take. By

clicking on the “Show samples” link in the top right, the right hand menu (Figure 6) displays

four options to show the following:

 • Response sample: The JSON object of the response to this call.

 • Response schema: Details about the response object and its fields.

 • Body sample: The JSON body of the call, if it has one.

 • Body schema: Details about the body object and its fields.

Deliverable D2.4

Access APIs

 Page 70 of 79

Figure 6. Swagger “Show Samples” sidebar

Deliverable D2.4

Access APIs

 Page 71 of 79

Figure 7. Swagger parameters box for a call

By clicking on the “Body sample” container, the parameters box (Figure 7) in the bottom

middle of the page fills with this sample, as seen in the following images. After setting the

values, the call can be tested and the results will show in a pop up container in the page

(Figure 8). In the Lite API page this will also work, however due to the different layout all this

information is shown right under the call in the same menu, the description, the models, the

schema, even the test call response (Figure 9).

Deliverable D2.4

Access APIs

 Page 72 of 79

Figure 8. Swagger API call results from test

Deliverable D2.4

Access APIs

 Page 73 of 79

Figure 9. Testing API calls in Swagger Lite UI

Deliverable D2.4

Access APIs

 Page 74 of 79

5 INTEROPERABILITY WITH THE JPSEARCH FRAMEWORK

5.1 BACKGROUND

Managing image data poses multiple challenges. Several copies of the same images may be

spread over several systems. When images are moved from one platform to another,

metadata – such as annotations or copyright information – is not always preserved. Often, this

is due to the usage of different metadata formats or usage of non-compliant import and export

schemes.

Searching digital images is not a trivial task either. One cause is inherent to the lack of

consistency in usage of metadata schemas. This makes addressing specific metadata elements

problematic. A second reason is the so-called semantic gap. Since not all images are textually

annotated, methods have been explored for querying images by content. However, most

common query languages do not support these novel techniques. Finally, accessing content of

online repositories is not organized in a consistent way. Many of these repositories provide

proprietary APIs, which differ from repository to repository and are often too restrictive to

handle more advanced queries.

JPSearch is a set of standards that aim to address interoperability in image search and retrieval

systems. JPSearch defines an abstract image search and retrieval framework. Interfaces and

protocols for data exchange between the components of this architecture are standardized,

with minimal restrictions on how these components perform their respective tasks. The use

and reuse of metadata and associated metadata schemas is thus facilitated. A common query

language is also defined to enable search over distributed repositories. Finally, an interchange

format is specified to allow users to easily import and export their data and metadata among

different applications and devices16.

The JPSearch standards are defined by the Joint Photographic Experts Group (JPEG). JPEG is a

joint working group of the International Standardization Organization (ISO) and the

International Electrotechnical Commission (IEC). It resides under JTC1, which is the ISO/IEC

Joint Technical Committee for Information Technology. More specifically, the JPEG committee

is Working Group 1 (WG1), Coding of Still Pictures, of JTC 1's subcommittee 29 (SC29), Coding

of Audio, Picture, Multimedia and Hypermedia Information. The word “Joint” in JPEG refers to

an additional collaboration with the International Telecommunication Union (ITU).

Although JPEG is mainly known for its image coding standards, the JPEG committee has

increased its efforts in providing more system level support for its suite of standards. One of

these efforts resulted in the JPSearch specification. The specification is composed of different

components addressing the system framework (Part 1), schema and ontology building blocks

(Part 2), the query format (Part 3), the file format for metadata embedded in image data (Part

4), the data interchange format for image repositories (Part 5) and finally the reference

software (Part 6). In-depth information on JPSearch can be found on www.jpeg.org.

16 Frederik Temmermans, Frederic Dufaux, Peter Schelkens, JPSearch: Metadata Interoperability

During Image Exchange, IEEE Signal Processing Magazine, Issue 5, Volume 29, pp 134 – 139, IEEE, 2012

Deliverable D2.4

Access APIs

 Page 75 of 79

On one hand, Europeana Space aims to increase the awareness of standards in the cultural

heritage community. On the other hand, it is important to bring feedback from the community

back to the JPEG committee in order to help them to shape future standards that fit the needs

of the cultural heritage sector when dealing with still images. This is done by participating in

workshops and representation and involvement in the JPEG activities.

This chapter focuses on the guidelines and actions taken to achieve interoperability of cultural

heritage image repositories with the JPSearch framework. In addition, it describes an open

source implementation of the JPSearch API that is provided as a reference. This

implementation will also be provided to participants of the Photography pilot hackathon.

5.2 ACHIEVING INTEROPERABILITY WITH THE JPSEARCH FRAMEWORK

5.2.1 Embedding metadata in JPEG images

A main cause of metadata loss is that often metadata is decoupled from the image file itself,

i.e. the metadata is stored and managed independently from the image. When the image is

downloaded and moved to another repository, the metadata is not retained. JPSearch Part 4 –

File Format – specifies a file format for embedding any kind of metadata in a JPEG or JPEG

2000 image. By embedding the metadata into the image itself, the metadata stays attached

with the image, even when it is moved between applications or platforms. The file format is

designed to be backward compatible with previously launched JPEG image coding standards.

As a consequence, the images will be readable by any decoder. The file format allows multiple

metadata instances to be embedded into a single image, even if these have different schemas.

Currently, the file format requires at least one embedded instance of the JPSearch Core

metadata. During the Europeana Space IPR Workshop in Coventry this was considered as a

downside by the community, since it requires supporting yet another additional schema.

However, not including a JPSearch Core schema should not necessary restrict compatibility,

since translation rules can be registered using the registration authority, as discussed further

on in this document. Therefore, a proposal was made during the 69th JPEG meeting in June

2015 in Warsaw to drop this requirement in addition to other improvements to the file format.

The proposal was well received and will be followed up during upcoming JPEG meetings.

At the time of writing, JPSearch does not provide means to protect metadata through

encryption. During the Europeana Space IPR Workshop in Coventry, it was discussed that this

an important feature, especially when metadata stays attached to the image. This feature is

however a requirement of the new Privacy and Security work item of the JPEG committee that

was officially launched during a workshop on 13 October 2015 in Brussels. Peter Schelkens and

Frederik Temmermans from iMinds represented Europeana Space in the organizing committee

of the workshop and Charlotte Waelde from UNEXE and Fred Truyen from KU Leuven attended

to give pertinent presentations during the workshop.

5.2.2 Metadata mapping and registration

In practice several metadata schemas are used alongside each other, often with overlapping

terms. To achieve interoperability, systems require mechanisms for translating metadata from

one schema into another. To that end, JPSearch defines the Translation Rules Declaration

Language (TRDL). This is an XML-based language that provides means for translating metadata

to and from the JPSearch Core Schema into equivalent information of an external (XML

serializable) schema. The TRDL focuses on mappings at the structural and syntactic level. A

transformation model specifies multiple rules with source and target format.

Deliverable D2.4

Access APIs

 Page 76 of 79

One field can be split or multiple fields can be combined during the translation. For more

complex conversions, such as splits or merges of certain fields, the TRDL provides the ability to

declare regular expressions over the content of elements or attributes.

Metadata schemas and translation rules can be registered via the JPsearch Registration

Authority (RA). The JPSearch RA is an official body designated by ISO hosted by the Distributed

Multimedia Applications Group (DMAG) of the Universitat Politecnica de Catalunya -

BarcelonaTech (UPC) (http://dmag.ac.upc.edu/jpsearch-ra).

In context of this project the Europeana Semantic Elements (ESE) schema was registered with

the JPSearch RA. ESE adopts Dublin Core (DC) element set as a basis. The Dublin Core element

set maps to the JPSearch Core metadata schema in order to provide interoperability with

JPSearch queries. Recently, Europeana has moved from ESE to the RDF (Resource Description

Framework) based Europeana Data Model (EDM). More information on dealing with RDF or

linked data is provided in the next section.

5.2.3 Linked data

Using predefined metadata schema, tags or key-value pairs entails a specific drawback, these

annotations are not necessarily universally interpreted in the same way. The annotations may

be language dependent or sensitive to differences in interpretation. This is one of the reasons

why Europeana has moved from ESE to EDM. JPEG also acknowledged this and therefore

recently introduced the JPEG Ontology for Still Image Descriptions (JPOnto). The main goal is to

provide a simple and uniform way of annotating JPEG images with metadata compliant to the

Linked Data principles. JPOnto specifies how RDF metadata annotations should be embedded

in JPEG or JPEG 2000 files and provides a core ontology for describing images. Since ontologies

are often very specialized and domain specific, as is the case for EDM, mechanisms are

foreseen to extend JPOnto core via the registration authority.

5.3 JPSEARCH API

This section describes the JPSearch API. The JPSearch API intends to give client applications

access to image repositories in an interoperable way. The API provides methods for accessing

variations of an individual image, image collections and metadata. A lightweight open source

reference implementation is provided that can easily complement existing repository

interfaces.

5.3.1 Basic concepts

The JPSearch API defines a set of queries expressed in the Uniform Resource Identifier (URI)

syntax, following the RFC 3986 syntax, as shown below:

scheme ‘://’ authority ‘/’ path [‘?’ query] [‘#’ fragment]

The API focuses solely on the “query” part of the former definition. The query part is a

sequence of key value pairs separated with an “&” character. The keys are referred to as

arguments or query options. Query options reserved by the JPSearch API are referred to as

“system query options”. These query options can have several types including numbers,

intervals, strings, timestamps among others.

Deliverable D2.4

Access APIs

 Page 77 of 79

The JPSearch API does not impose any restrictions on the remaining part of the URI, i.e. the

scheme, authority, path and fragments. Furthermore, additional query options can by

specified, as long as they do not infer with the system query options. In case there is an

overlap with system query options, a prefix can be specified in the capability descriptions.

The capability description is a required resource that should be served by any JPSearch-server.

It specifies the available functionalities, restrictions and additional information such as

authentication. System query option can be enabled or disabled and default values can be

overwritten. The capability description is requested in an initial interaction between a client

and server. It informs the client about what queries can be sent and how they should be

formatted for the respective repository.

A JPSearch-client requests resources from a JPSearch-server. In addition to the capability

description, the main types of resources are images, metadata and collections. The following

sections provide more information on requesting these resources. However, the provided

information introduces basic concepts and principles but is not all-embracing. More detailed

information can be found in the specification of the standard. In addition, the information

included with the software specifies available functionality and usage of the options.

5.3.2 Image resources

The JPSearch API defines a set of requests at the level of an individual image. In practice, this

means that the same image can be provided at different sizes, different qualities, including or

stripped metadata and so on. The return type of these requests is a JPEG or JPEG 2000 image

file. The original image can be requested by its resource identifier, without specifying any

system query options. Various versions of the original image can be requested by specifying

system query options. An implementation of the API should not necessarily support all system

query options. Enabled and disabled options are determined by the capability description. The

requestable versions of an image can either be static, i.e. pre-generated, or they can be

generated dynamically on request. This implementation generates the versions dynamically.

The versions are generated using ImageMagick (http://www.imagemagick.org). ImageMagick

is an open source (Apache 2.0 license) software package to create, edit, compose or convert

images. It can read and write images in a variety of formats including JPEG and JPEG 2000. In

addition to ImageMagick, jhead is used for metadata manipulation

(http://www.sentex.net/~mwandel/jhead/). The server side code of is written in PHP.

Here is a list of system query options at the image level:

 crop Specifies whether the returned image should be cropped and at what aspect

ratio.

 includemd Specifies whether the embedded metadata should be included or

discarded.

 maxw Specifies the maximum width of the returned image.

 maxh Specifies the maximum height of the returned image.

 quality Specifies the quality of the returned image as a value between 0 and 100

where 0 is the lowest quality and 100 is the highest quality.

 roff Region offset. Used in combination with rsize to request a rectangle region of

interest.

Deliverable D2.4

Access APIs

 Page 78 of 79

 rsize Region size. Used in combination with roff to request a rectangle region of

interest.

 scale Scale of the returned image.

 thumb Specifies whether the image should be returned as a thumbnail. When a

thumbnail is requested, maxw and maxh are set to 256, metadata to discard, crop to

square (and quality to 50). These values are overwritten when one of these arguments

is specified.

5.3.3 Image metadata

Some applications need to present metadata of an image without presenting the image itself.

Therefore, metadata can be requested separately from the image by specifying an image URI

in combination with the metadata system query option. Metadata fields can be selected of the

JPSearch Core Metadata schema, as defined in ISO/IEC 24800-2:2011. The value of the

metadata argument is a comma-separated list of the requested metadata fields represented

by their name or XPath expression. For example, the following request:

http://www.repository.org/image.jpg?metadata=

Title,Creators,GPSPositioning/@latitute,GPSPositioning, RightsDescription/Description

will return the following fields:

 Title: content of the title field

 Creators: the GivenName and FamilyName of the creators, space separated

 GPSPositioning/@latitude: latitude attribute value of the GPS localization

 GPSPositioning: complete GPS positioning

 RightsDescription/Description: content of the Description field of the RightsDescription

element

Alternatively, when the value is set to all, the complete JPCore metadata is returned. In this

case, the return format is XML, i.e. JPCore metadata is returned according to the ISO/IEC

24800-2:2011 specification. Finally, JPOnto compliant RDF descriptions can be requested with

the parameter set to description.

5.3.4 Collections

A collection is a set of images identified with a URI. In general, a collection is a subset of the

images served by a repository. The return type of a collection is a JSON (application/json) file

listing the resources of the images in the collection.

Queries at the level of a collection can be distinguished between metadata agnostic system

query options and JPSearch metadata based conditional queries. Metdata agnostic query

options provide arguments for common queries such as location, size, colour, time, type and

free text. Conditional queries support common operators such as equals, greater than, and, or,

not, etc. on JPCore metadata fields. For both types of queries, the implementation makes use

of a SQL database that contains a relational representation of the metadata of the images in a

collection. A JPSearch API query is translated to a SQL query on this database. The results are

then in their turn translated in the JPSearch API output format for representing a collection.

Deliverable D2.4

Access APIs

 Page 79 of 79

6 CONCLUSIONS

This document has described the Technical Space application data model and its

implementation and has fully documented the platform's API. Additional details on the

operation of the system can be found in deliverable D2.3 that document's the Europeana

Space infrastructure. The external APIs combination feature is outlined, as the major facilitator

towards efficient discovery and re-use of available CH content. The development of the API is

presented through a revision of the requirements phase and its first two major releases. An

exhaustive list of API calls covering version 2 is documented. Finally, guidelines and actions

taken to achieve interoperability with the JPSearch framework for image search and retrieval

are discussed.

It is important to note that the development of the platform is ongoing, following the activities

of the project and taking advantage of the feedback gathered from the pilot teams and the

usage of the API by third-party developers. In the same time, other initiatives and projects take

advantage of the platform's functionality to enable their strategies towards collecting,

visualizing and making available their CH content, thus providing new channels of feedback

and guiding the development towards intuitive and innovative functionalities. The online

documentation page offers the latest release information, instructions for using the platform,

and the latest news about the Technical Space APIs.

To give an interesting example of the platform's evolution, NTUA is currently working on

providing the infrastructure to create and operate crowdsourcing workflows. These aim to

present and validate CH resources documentation and collect annotations from users in a

formal, semantic web based approach that allows for the formal recording of all information

and its provenance. The Europeana Sounds project aims to implement such a workflow, using

the Pundit tool that is integrated in the platform, to crowdsource annotations for the project's

CH resources in their efforts to enrich and validate the metadata with the public's

participation.

